周口超长不锈钢无缝盘管新闻
这种凝固形式只是在合金液中有足够的铁素体形成元素(铬的钼)在亚晶界处偏聚的条件下才会发生。由于这种铁素体富含有较多的铁素体稳定元素Ni,能够稳定存在,因此在随后的冷却过程中不会再继续发生相变或分解而得以保留,而奥氏体晶粒呈现出方向性极强的树枝状或胞状生长。最终形成室温下奥氏体基体中分布少量共晶铁素体的显微组织。
FA型凝固模式及骨架状和板条状铁素体组织
FA和F型凝固模式的初生相均为δ铁素体。FA型凝固模式(1.48< Creq/Nieq<2.0)是以铁素体为先析出相,在液相尚未完全凝固前,通过包-共晶反应形成了一定数量的奥氏体,分布在铁素体凝固边界,随温度的降低,大部分初生铁素体通过固态相变转变为奥氏体,余下的少量铁素体则呈骨架状或板条状弥散分布于奥氏体基体中,共同构成最终的室温组织。
周口超长不锈钢无缝盘管简介
如果这一方案既能满足盘管的质量要求,又最大限度地降低各种成本费用、生产准备周期,那么,它所形成的方案将是最佳方案。我们已经知道,虽然拉弯成形成形此盘管是可行的,但不能形成盘管的下陷。所以盘管的下陷只能采用其他的方法成形。在材料分析中,我们知道,此材料在常温下成形有一定难度,加之盘管的材料厚度为啄2.03mm,下陷深度1.5mm,尤其是拉弯成形后材料硬度增大,成形困难,贴胎度无法保证。经查阅资料,该材料在冷成形后可以通过进行固溶热处理消除内应力,使盘管容易成形,所以,我们可以利用将拉弯后的盘管进行固溶热处理(温度1052益依14)后再成形。2.2加工成形方案的初步确定,
综合以上的分析、论证,可以得出以下结论:在充分考虑质量、成本、周期三因素的前提下,针对此类盘管的最佳加工方案只能是:拉弯+固溶热处理+成形下陷+手工敲修的复合成形。虽然从严格意义上说,这一加工方案是几种加工方法的“大杂烩”,但它充分利用了公司内部的设备资源。
周口超长不锈钢无缝盘管知识
不锈钢盘管在较高应力时蠕变断口处晶粒发生了一定量的塑性变形,晶粒略被拉长。除主断口外,在断口附近三晶粒交合点及晶界突缘处发现有少量分散孤立的楔形裂纹或洞型裂纹,其断裂方式主要是沿晶的。同时,断口边缘也呈现少量穿晶型断裂迹象,约占断口的25%,表明不锈钢盘管为穿晶与沿晶混合型断裂。相应基体组织未发生明显变化。而图3.8c中由于较低应力长时蠕变作用晶界处析出相则显著增多,尺寸变大。断口处几乎未观察到穿晶型断裂,基本为沿晶断裂特征形貌,同时,在较高温和应力作用下,由蠕变造成的晶界裂纹数量和尺寸都有增加。值得注意的是,在基体中观察到裂纹沿晶界长大连接而成的裂纹段,长约为11.3um,并垂直于拉应力方向(箭头1),这与传统理论认为裂纹扩展优先沿切应力方向的界面上进行是不同的。文献研究认为,其沿晶断裂主要原因是在较高温度、较低应力水平下,晶界滑移时遇晶界上的第二相或三晶粒交合点,滑移将受阻,从而产生应力集中形成空洞源。不锈钢盘管在拉应力作用下,晶界上的许多空洞优先沿垂直于拉应力轴方向的晶界上长大并相互连接,最终造成蠕变断裂。